If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(^3+7+19+13)D=0
We multiply parentheses
D^2+7D+19D+13D=0
We add all the numbers together, and all the variables
D^2+39D=0
a = 1; b = 39; c = 0;
Δ = b2-4ac
Δ = 392-4·1·0
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-39}{2*1}=\frac{-78}{2} =-39 $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+39}{2*1}=\frac{0}{2} =0 $
| 177/4-77/4=x | | 12.3-5.5x=67.8 | | 87x-432=6000 | | 3x^2-28x=-4x^2-5x-18 | | 3x(9-9x)=4/3 | | 3x-48x+72=0 | | 7*(x)+2x=45 | | 28x=28+13x | | 33x=33+14x | | (100-x)*1=x*0.4 | | X/5=5+(x-4)/2 | | x=100x-0.5x^2 | | 20*(x)-20=50 | | 20*x=80000 | | 5(2x+1)=3(x+4)-5= | | x+84=x-108 | | x+84=×-108 | | n^2+n-4000=0 | | (7x+4)+13=6 | | X+5/18=1/9+x-6/7 | | -4v+34=-9v+4 | | 8y^2-24y=3 | | 8y^2+24y=3 | | Y=(3x-5)(4x-6) | | (3x-4)+(3x+10)=180 | | G=2f-5 | | 2x^2-10x=12=0 | | 20=3v-7 | | -1=4-5y | | 13+x-7=22-x-16 | | 2x-9/8-x-1/6=-x/12 | | v3+7=12 |